
Software Risk Management through Independent Verification and
Validation

John R. Callahan1

Tong C. Zhou
Ralph Wood

Department of Statistics & Computer Science
Concurrent Engineering Research Center

West Virginia University

Abstract
project, risk can be reduced if errors and other
discrepancies are found as early as possible in
the software development life cycle. Many
studies have shown that undetected errors in a
project will increase the likelihood of failures in
later life cycle phases when the cost to fix them
increases by orders of magnitude.

Software project managers need tools to estimate
and track project goals in a continuous fashion
before, during, and after development of a
system. In addition, they need an ability to
compare the current project status with past
project profiles to validate management
intuition, identify problems, and then direct
appropriate resources to the sources of problems.
This paper describes a measurement-based
approach to calculating the risk inherent in
meeting project goals that leverages past project
metrics and existing estimation and tracking
models. We introduce the IV&V
Goal/Questions/Metrics model, explain its use in
the software development life cycle, and
describe our attempts to validate the model
through the reverse engineering of existing
projects.

IV&V efforts are highly effective in early life
cycle phases [1] if they can successfully predict
the likelihood of problems based on an analysis
of the current state of a project. It is difficult,
however, to make such predictions with
provable accuracy and show correlation between
development activities and problems that arise
in later life cycle phases. Formal software
development models can provide some insight
based on quantified analysis of past software
development efforts [2,3]. While such formal
models are imperfect guides to future efforts,
they are far more likely to predict problems than
informal methods.1 Introduction

We have developed an approach called the
IV&V Goal/Question/Metric method (IGQM)
that allows IV&V managers to monitor the level
of risk in a software development project. Using
IGQM, managers can use past projects as
"yardsticks" against which to measure present
projects. They can also assess the potential
impact of their decisions about resource
allocations, schedules, costs, and tradeoffs

Managers of large, complex software projects
often rely on independent contractors to verify
and validate (V&V) the computer software
produced by a separate development contractor.
An independent V&V (IV&V) contractor helps
identify, manage, and reduce the potential risk
of failures to meet intended requirements in a
software project at all phases of development.
While some level of risk will always remain in a

1This work is supported by DARPA Grant MDA 972-91-J-102 under the DARPA Initiative for
Concurrent Engineering (DICE) program, NASA Grant NAG 5-2129 and NASA Cooperative Agreement
NCCW-0040 under the NASA Independent Software Verification and Validation (IV&V) Facility,
Fairmont, WV.

goal 1

goal 2

goal 3

question 1

question 2

question 3

metric 1

metric 2

metric 3

Figure 1: The Goal/Question/Metric (GQM) model

during execution of the development effort. The
IGQM method provides continuous reporting of
the status of a project in terms of what areas are
at risk of failure. The method represents a
formal interface between the IV&V contractor,
the software development contractor, and the
customer. It summarizes the analysis work
performed by the IV&V contractor in terms of
what project goals are at risk of failure and
allows managers to make informed decisions
about why problems are occurring.

the software development process [5] and it is
responsible for continuous assessment of the
development process. As a software
development process progresses, events are
triggered in the IV&V process. The IV&V team
must analyze changes in the development
process and publish its findings to the customer
in the form of an IV&V report. This report is
generated using the IGQM method by a tool that
is integrated into a CASE environment. The
reporting tool collects and summarizes analysis
results (i.e., metrics) from other IV&V CASE
tools in an incremental fashion. When a change
occurs in the development process, the project
measurements and risk are updated
incrementally like values and formulas in a
spreadsheet. The risk impact of each change is
assessed immediately relative to the project
goals. This paper does not discuss the details of
the automated support environment, but focuses
on the IGQM model around which the
environment is organized.

This paper discusses the IGQM model and its
use in an automated support environment [4].
Unlike existing metric-based models, our
approach does not emphasize any specific set of
metrics or functions for assessing risk. The
model allows for use of other assessment
models. The IGQM model is used to collect and
summarize the metrics and relate them directly
to project goals. Although our approach to
IV&V relies on metrics from past projects as
baselines, the model can be "primed" with
informal estimates or external project databases.
Results from pilot projects are then used as
feedback to provide continuous improvement to
the model itself in order to improve our
predictive accuracy.

2 Approach

The IGQM approach to software IV&V focuses
on the quantification, identification,
management, and reduction of risk in software
development projects based on objective metrics
taken during the software development life
cycle. Metrics include process measures (i.e.,
whether or not a particular procedure been
performed at this phase) as well as artifact
measures (i.e., quantitative measurements of
documents, code, tests, and other products).
The IGQM tool formally defines the impact of
such measures on the failure or success in
meeting project goals.

The IGQM model can incorporate several
existing software estimation and tracking
methods. These include the COCOMO method
[2] and Software Equation [3] for estimating
cost, size, and effort. We describe our attempts
to validate our approach by using these methods
to reverse engineering past projects to determine
if identifying risk sources early in the life cycle
could have helped prevent later problems.

The IGQM model is embedded in an automated
support environment for software IV&V [4] that
allows continuous analysis of a project's status.
IV&V is viewed as a complementary process to

Our approach is based on the Goal-Question-
Metric (GQM) model [6] augmented with risk
analysis [7]. The GQM model depicted in
Figure 1 allows managers to explicitly describe a

Project Confidences Certainty Uncertainty Importance Risk
Q1 Q2 Q3 Q4

G1 1.00 0.36 0.77 0.00 0.45 0.55 0.80 0.440
G2 1.00 0.36 0.77 0.00 0.78 0.22 0.30 0.066
G3 1.00 0.36 0.77 0.00 1.00 0.00 0.90 0.00
G4 1.00 0.36 0.77 0.00 0.04 0.96 0.10 0.096

Table 1: Computing goal risks based on question confidence probabilities

Questions M1 M2 M3 M4 confidences

Q1 34 11 88 99 1.00
Q2 34 11 88 99 0.36
Q3 34 11 88 99 0.77
Q4 34 11 88 99 0.00

Table 2: Computing question confidence probabilities based on project metrics

project in terms of a set of goals so that the
development team has more precise knowledge
about the intent of the customer. A project must
completely satisfy a set of goals to be
implemented successfully. Goals include
requirements but are much broader and can
include ambiguous statements like "the system
must be highly reliable.'' Each goal is satisfied
by answering a set of related questions. The
questions define the features needed to satisfy a
particular goal. Questions are answered true or
false, but can be parameterized with limits, e.g.,
"does the system have a 10,000 hour mean time
between failures?" Each question is answered
based on a set of quantifiable project metrics. A
metric might be "lines of code" or "estimated
mean time between failures" or any other
discrete value. The GQM approach is used as a
dialogue between customers and development
organizations for agreeing on the details of a
project. In this fashion, it should be clear to the
developer exactly what is expected of the final
product and the criteria for its acceptance.

• Low cost
• Medium effort
• Use of prototyping
• High reliability

The questions related to each goal in the IGQM
model will determine exactly what is meant by
each goal. The risk values associated with each
goal should change during the software
development life cycle. If we keep track of the
risk at each step in the development process, we
can identify high-risk goals and ensure that the
overall risk is non-increasing over time, i.e.,
while risk may increase at any step, the overall
risk trend is decreasing.

2.1 Risk associated with each goal

To calculate the risk associated with each goal,
the importance of the goal is specified explicitly
by the manager, but its certainty is computed
from answers to related questions in the GQM
model. For each goal-questions group, we
employ a set of certainty functions G at each
step of the development life cycle defined as

We have augmented the GQM model to
compute the risk of failure in a project to satisfy
the intended goals. The risk of failing to satisfy
the goal is defined as the uncertainty of reaching
that goal multiplied by the importance of that
goal. Table 1 shows a list of goals, their
importances, certainty, uncertainty, and risks for
an example project. The goals G1,...,G4 might
be

g G Q Qi t i t x t y tp p q r, , , ,(, ,)= Κ

where gi tp, ∈ 0 1Κ for the i th goal at the
process step tp and each Qx tn, is the
probabilistic confidence answering question x
as true at process step tn . Thus, the certainty of
satisfying each goal changes at each step in the
software development process. The certainty

Estimated probability of not exceeding size

SLOC x 1000

0

50

100

150

200

250

1 10 25 (-1
stddev)

50
expval

84 (+1
stddev)

90 99

Q1

Q2

Q3

Q4

Figure 2: Confidence functions for estimated SLOC in early life cycle phases

functions may be based on the baselines of past
projects or on the results of simulated models.
In either case, the results of certainty functions
are added to the baseline for use in future
projects.

questions and in turn decreases the certainty of
satisfying a goal.

3 Predictive Functions

The characteristic certainty and confidence
functions associated with goals and questions
can be based on many existing methods that
have evolved from experiences on large numbers
of actual projects. The IGQM model simply
tries to relate the calculation of risk to the
analysis these methods provide in order to help
identify areas of a project that need attention
and allow managers to trace problems to their
sources.

2.2 Confidence in answers to questions

Here is where existing estimation and tracking
methods fit into the IGQM model. Each
question can be answered true with a
characteristic probability called its confidence.
A false answer has a confidence value of zero.
The confidence of answering a question is
determined by a unique function based on
collected project metrics. For each question-
metrics group, we employ a set of confidence
functions Q defined as

For example, several methods exist for
estimating the eventual number of source lines
of code (SLOC) in a project [3]. Early estimates
of SLOC will be very inaccurate, but we can
assess the probability of the correctness of our
estimate. Consider the goal of "Small Program"
in which the related questions are:

q Q M Mx t x t a t s b t sp p q e r f, , , , , ,(, ,)= Κ

where qx tp, ∈ 0 1Κ for question x at the
process step tp where each Ma t sz e, , is a metric
a at step tz provided by source se. Table 2
shows a question and its related metrics from
which a confidence function is defined. All
metric values are the same relative to each
question, but the confidence functions are
defined uniquely for each question and process
step. Metrics that are unknown at process steps
can still be used because the lack of knowledge
contributes to the risk calculation. Unknown
measure decrease confidence in answering

1. Are there less than 100 requirements?
2. Are there less than 50 function points?
3. Are there less than 50 modules?
4. Are there less than 10,000 SLOC?

In this example, question 4 might given the
most weight in ultimately determining the
acceptance criteria. However, in the early stages
of a project, we can only answer question 1 with
a large degree of confidence, but the answer to
this question will not have a large impact of
increasing the certainty of meeting the goal

according to our weighting. Figure 2 shows a
risk profile for the different questions at this
stage of development. The relatively higher
slopes of the other questions illustrates a greater
degree of uncertainty.

confidence and certainty functions related to
each goal and question respectively.

Creating the certainty and confidence functions
is not easy. They are based on profiles of past
projects, contain coefficients that are specific to
each environment or project, and must be
primed initially with estimates or data from
external projects. By mapping our approach to
current software development and V&V
practices, we "reverse" engineered these
estimates from informal measures on past
projects. Even though some information was
not available on these projects, they were
adequate enough to provide working estimates.
In one case we wanted to verify the intuition of
V&V personnel who noted problems with the
delivery schedule of project milestones. In their
expert opinion, the schedule was too short. Our
model, based on existing methods such as
COCOMO, confirmed that the intuition was
correct.

The weighting of each question confidence
measure in determining goal certainty will
change during the lifetime of the project, i.e.,
the slopes will decrease and different measures
will play larger roles. Eventually, confidence
functions may get better with more experience
and a broader database of actual projects. This
will also decrease the uncertainty.

Estimating functions are highly domain
dependent. This is why it is important for each
organization to institute measurement programs
to improve the effectiveness of their predictions.
The IGQM model can be primed with hand-
picked estimate or those from external projects,
but these initial estimates will be highly
inaccurate. Only with time can an organization
build confidence in their predictive models. Of
course, changes in personnel and the need to
tackle new projects can invalidate previous
experience, but

In the next sections, we show how traditional
V&V activities can be mapped to our model.
Specifically, we relate process management and
testing to see how they contribute to project
measurements and at what stages of the life
cycle. Based on this mapping, we can assess the
relative effectiveness of these traditional
approaches in controlling software projects.
Process management, for example, ensures that
the software development team follows all
process steps (e.g., DOD 2167A) and follows up
on all discrepancy reports and anomalies. It
monitors that the proper artifacts (i.e.,
documents and code) are produced on time and
in their proper order. Testing, on the other
hand, is usually associated with code level
validation of the end-product system in a
simulated environment. While it is widely
believed that both of these approaches help
reduce project risk, they have serious limitations
in many projects, especially in large, complex
systems with volatile requirements. It is
possible that expensive and catastrophic errors
may go undetected using traditional approaches.
We show that according to our reverse
engineered projects, late life cycle testing may
find some errors but it is often too late to fix
them. This fact shows up not as an increase in
risk towards the end of the project, but as an
inability of existing techniques to keep the risk
trend non-increasing and within nominal limits.

In the case of SLOC, we can determine the
probability of the eventual number of lines of
code exceeding our estimate. Likewise, many
methods exist for cost, size, error, and effort
estimation. Whereas many of these techniques
are only used early in a project to construct a
proposal or plan, our approach allows managers
to track actual measurements and compare them
with estimates. As a project evolves, a manager
can gain greater confidence in the estimates as
they change dynamically based on actual
performance.

4 Discussion

In Table 1, we can see that goal G1 is the only
goal with significant associated risk. If the
confidence and certainty functions are based on
methods that leverage past project data, the risk
associated with G1 at this process step might say
something like "44% of the projects at this step
with a similar goal-questions profile failed to
successfully satisfy this goal at time of delivery.''
The interpretation is based on the characteristic

Process management and testing alone are
inadequate means to manage risk in large,
complex projects.

Traditional testing does not permit early
detection of problems and it is often impossible
to exercise a system with a battery of tests that
completely characterize the operational
environment. If major problems occur, it is
often too late and expensive to fix them. As a
result, the software might experience traumatic
failure, the project is scrapped, must be redone,
or the customer is left dissatisfied with a
partially functional system. If the customer had
access to effective, predictive estimate earlier in
the development process, expectations might be
more realistic and the intentions better defined
with the development team.

4.1 Process

First, an IV&V team can check to make sure the
software development process is followed at all
steps. The goal of this task is to reduce risk by
ensuring that a process is followed that increases
the probability of success. The reasoning behind
this task is informal: if a past task was
successful using a process then each step must
be repeated to guarantee success in other
projects.

5 Implementation
We can cast current software development
practices into the IGQM risk model by asking
specific questions about process steps
accomplished. The metrics are Boolean values
that help answer questions at each step
regarding whether or not a procedure has been
performed. In this fashion, the IGQM approach
subsumes these current "checklist'' methods and
provides a metrics-based environment for
formally validating whether or not generic
assumptions about process effectiveness are true.
Process tracking by the IV&V team is necessary
but insufficient to ensure risk reduction in the
development project.

We have implemented the IGQM model in a
tool for use by IV&V practitioners. The tool,
called ADMIT (A Distributed Metrics
Integration Tool), is implemented in Tk/Tcl
under the X Windows system and the UNIX
operating system. The tool primarily consists of
three list boxes of goals, questions, and metrics
and a multi-graph widget that shows the
cumulative risk for the project, per goal,
question confidences, and metric values.

Metrics come from many sources in the
distributed environment. Some come from
shared files and databases (e.g., the Network
File System (NFS), Oracle). When the files
change, the tool read the file, updates the
measure, and recalculates the associated
confidence and certainty functions. Metric may
also be source directly from CASE tools using
remote procedure call in which the ADMIT tool
acts as the server. We are continuing to evolve
our implementation as we integrate other
sources of metrics and techniques for collecting
them.

4.2 Testing

Software testing has been a major focus of
IV&V efforts, but testing is expensive and has
severe limitations. Traditional testing cannot
find many problems or finds problems too late in
the software development life cycle where they
are too costly to fix. In the IGQM model, the
results of tests can be viewed as metrics (e.g.,
pass-fail). From this metrics-based perspective,
early analysis of requirements and design can
also be viewed as "tests'' but the test results are
viewed with less confidence than concrete tests
at later stages of the development life cycle. In
addition, the tests can be directly associated with
requirements or project goals in the IGQM
model. In this case, the existence of a test is
important for tracability. We used this approach
to model traditional testing in the IGQM model
and showed that late testing reduces risk, but
that the risk trend is already too high at later
phases for testing to have any significant effect.

6 Summary

Our approach depends on an intense metrics
collection and archival capability to provide
high levels of confidence in IV&V predictions.
It also depends on the continuous evolution of
the predictive certainty and confidence
functions. While our approach does not
eliminate risk from a project, it does formalize
the risk identification, management, and
reduction. It makes risk management the

explicit objective of the IV&V process in order
to deliver effective results to the customer.
Moreover, the confidence of predictions can be
increased as our baseline grows with each
project. For well-defined application domains,
we expect this approach will have most value
based on extrapolating experiences with the
IGQM model in practice.

[6] Basili, V., Applying the
Goal/Question/Metric Paradigm in the
Experience Factory, in Software Quality
Assurance: A Worldwide Perspective, Chapman
& Hall Publishers, 1994.

[7] Cardenas-Garcia, S. and M. Zelkowitz,
A Management Tool for Evaluation of Software
Designs, IEEE Transactions on
Software Engineering, Volume 17, Number 9,
September 1991.

While a statistical risk model of IV&V does not
guarantee success, it represents a significant
improvement over existing practices that deliver
dubious value to the IV&V customer and may
unknowingly harm software development efforts
with needless paperwork. During the course of
our research, we continue to investigate (1)
effective process models; (2) specific and useful
metrics and their correlation within the process;
and (3) continuous improvement of certainty
and confidence functions associated with the
process.

8 Biographies

John R. Callahan is an assistant professor of
computer science in the Department of Statistics
and Computer Science at West Virginia
University and a research faculty member at the
Concurrent Engineering Research Center
(CERC) in Morgantown, West Virginia. He
received his Ph.D. from the University of
Maryland College Park in 1993 in software
engineering and is currently working on
research in independent verification and
validation of computer software. He has worked
for Xerox Corporation of Tyson's Corner,
Virginia and Palo Alto, California as well as
NASA Goddard Space Flight Center and the
Department of Defense. Dr. Callahan serves as
the NASA Research Associate at the NASA
IV&V Facility in Fairmont, West Virginia. The
Fairmont facility houses IV&V contract work
for the Mission To Planet Earth and Space
Station projects.

7 References

[1] The Cost-Effectiveness of Independent
Software Verification and Validation, NASA Jet
Propulsion Laboratory, 1985.

[2] Boehm, B., Software Engineering
Economics, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1981.

[3] Putnam, L. and W. Myers, Measures
for Excellence: Reliable Software on Time,
within Budget, Prentice Hall, Inc., Englewood
Cliffs, NJ, 1992. Tong C. Zhou is a graduate student in the

Department of Statistics and Computer Science
at West Virginia University and a researcher at
the Concurrent Engineering Research Center
(CERC) in Morgantown, West Virginia. Her
interests include formal methods, risk analysis,
and automated test generation.

[4] Karinthi, R., S. Kankanahalli, S.
Reddy, C. Cascaval, W. Jackson, S.
Venkatraman, H. Zheng, Collaborative
Environment for Independent Verification and
Validation of Software, In Proceedings of the
Third IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, April 17-19, 1994, Morgantown,
WV.

Ralph Wood is a visiting scientist at the
Concurrent Engineering Research Center
(CERC) in Morgantown, West Virginia. Dr.
Wood is a former senior engineering scientist
for General Electric Research and Development.
His interests include risk management and
cost/schedule estimation.

[5] Lewis, R., Independent Verification
and Validation: A Life Cycle Engineering
Process for Quality Software, John Wiley &
Sons, New York, 1992.

